Introduction

In early 2011, I built a geodesic dome greenhouse in my garden in Norfolk. I recorded the process of designing and building it in a diary-style †as I went along, as much for my own record as for publication to others. Now (May 2011) I notice that the blog is getting a trickle of hits, a few each day, so †I'm adding this introduction. I will also add a section at the end about the greenhouse costs.

The greenhouse is starting to fill with plants, and we have neen eating radishes and salad leaves. I will add some photos when the tomato plants are a little bigger.

Feel free to leave a comment.

18th January 2011

The beginning:†One of the first things to say is this: if you want to find out about building one of these structures, you really should look elsewhere. You should, in fact, search in Google for "Geo-dome" where you can find more information about self-build domes than you could read in a week. On one particular site there are calculator tools that take care of the maths, but I am not permitted - by the blog hosts - to give you the URL. This is a personal account of what I should probably call my first attempt at building a dome,

So: here's the site:

Site Layout

The picture shows a 6-metre circle on the grass which is the proposed greenhouse size. Yes, it is quite a large one; more the size of a small polytunnel. It's outlined with a piece of scrap pipe, and the hole in the centre recently held a large tree stump. The ground is very sandy, and I am wondering how substantial to make the foundation.

Meanwhile, indoors, I have started making the hubs - the connection points for all the struts that make up the dome. I have decided to make them out of 3-inch diameter pressure water pipe, cut into 2-inch cylinders. Finding a short length of 75mm hdpe pipe was not easy; it usually comes in 50m coils (and I only needed 2 metres). I found an ebay supplier ("SupplyingDirect") eventually and bought 6 metres for a not-unreasonable price.

This is a cutting jig for slicing the pipe up 2 inches at a time. Using a jig saves a lot of time, and makes it easy to get the hubs square-cut and uniform size.

IMG_2574

And the finished pile of 46 hubs:

IMG_2577

19th January 2011

Of course, it has struck me that I might be building a geodesic pile of broken sticks and polythene. The PR for these structures is all about the spreading of the weight and stress, but I've just put in an order for a large pile of wood, and I'm wondering whether these little rings of plastic I've been making are man enough for the job. A set of purpose-made hubs would be very nice, but I haven't seen any for sale at less than £500. (That's a lot more than I'm planning to spend in total.) Another potential weakness is the method of fixing the wooden struts to the plastic hubs: I am planning to use M8 machine thread to woodscrew dowels, that will screw into the ends of the wooden struts and provide a threaded bolt that can be attached to the hubs with a nut. I think there is a danger that the fixings will split the end of the wooden struts. At one point, I was looking into using Western Red Cedar for the struts, but this is a timber that is very easy to split, so possibly not ideal for this project. I'm going to use European Redwood, treated, 38 x 38mm. I'll drill pilot holes for the dowels, try to get them very accurately centred, and for good measure I will lash up each strut end with a cable tie.

On the subject of cost, which I was a minute ago, the timber is going to cost around £150. I think the polythene might be around £100, and I will try and keep all other costs to £100 - though this depends on the foundations, could be £150. £400 max - What do you reckon? †(See notes on costs at the bottom of this page)

Not included in these costs is my new toy. I have bought myself a chop saw, a sliding, mitre power saw. There is a lot of accurate cutting of struts with some fancy angles on the ends coming up.

20th January

I have been marking up the bits of pipe to make dome hubs today. It's not as straightforward as you might think from a casual glance at a dome. Mine has 46 hubs, and I am putting my faith in online dome resources as usual for the information about the angles needed between struts. I have 6 pentagons (72 degrees), 5 regular hexagons (60 degrees), 5 part-hexagons, regular (4 @ 60 degrees), 20 irregular hexagons (56 and 62 degrees) and 10 irregular part-hexagons (56 and 62 degrees).

Hub angles on paperMarking hub anglesHubs marked for drilling

23rd January

I've finished all the hubs now, all drilled with the required number of holes in what I believe to be the right position. A box of hardware arrived this week: woodscrew to M8 dowels, nuts, washers and cable ties.

Screwfix sell these dowels (item 11850-12); however, I bought from Warehouse Direct, where they are much cheaper.

I think the foundation is just going to be a 9-inch trench, 6 inches deep and filled with gravel. I'll rest the structure on 6-inch timber bearers and hold it down with rebar stakes. I'd be surprised if 4 or 6 men couldn't lift the finished structure off the ground, so I think concrete foundations would be over the top. The site is sloping slightly, (6 inch fall), so I might put a course of concrete or cinder blocks in as well.

I am making a 4/9th 3v dome. The 4/9th means that my dome will be less than a hemisphere; this will give the structure a low profile, and should reduce the risk of wind damage. (As you can see from the site photo, the site is also well sheltered from wind in two directions). A 5/9th dome would be larger than a hemisphere. A 3v dome that is exactly hemispherical would result in a row of truncated triangles along the bottom, which would offend the eye, and would be something of a rarity.

Your virgin blogger has been feeling, from time to time this week, as if he is back in the eighties. That is the last time I remember using a word processor that would allow me to exit the programme without prompting you to save your work. Yet here, it's an everyday occurence once again. I'm writing away and I get distracted by a button on the screen that says "Statistics" or "Subscribers" or some such, I take a quick peek at where they lead, and find that all my new writing has disappeared.

30th January

I had a struggle for a couple of days trying to level the site "The Easy Way". I mean by this, trying to do it with a spade, a few levelling pegs and an inexperienced eye. Getting nowhere, I decided to invest a bit of time in planning and equipment and came up with the radial arm level beam shown below

IMG_2590

Not exactly rocket science, but it's the first time I have had to prepare a site of this size, and I was impressed how easy it made the job. So, all's flat and much more perfectly circular than it used to be. I have started to dig a trench 6 inches deep and 9 inches wide around the circumference, still using the radial arm to keep the trench bottom level. I'm going to fill this with gravel.

Meanwhile, I have collected the timber from the woodyard. It looks quite good quality with no large knots, and cut to a very regular 38mm square. I think if I have any problems, it is likely to be warping and sagging over time.

I have started cutting. The chop saw does it in a flash; after about an hour, I had 50 (of 120) struts cut to 1124 mm with 12 degree angles on each end.

1st February

You might imagine that building this structure was all geometry and woodwork. For my project, so far, it's been mainly spades and wheelbarrows. For every hour I've spent on construction, I must have spent two or three on site levelling and foundations. The good news is that the site is now flat, and the foundation is about three-quarter dug.

Here's what it looks like today:

IMG_2593

Just another 4 metres of trench to dig, and a half ton of gravel to fill it up. In terms of supporting the structure, I think this work may be over the top. However, I think the gravel trench will help with drainage. There's no way to put a gutter on a dome, so there could be a lot of rainwater running down the surface onto the surrounding soil.

I have been cutting and drilling the struts. I have tried posting some video on here, but I think it might offend the rules of the site. Although the video previews satisfactorily, as soon as I try to publish the blog with video, I get error messages. Not only does the new material fail to publish, but I lose the whole page as well!

Geodesic dome struts are not all the same length. In the version I am making, there are three different strut lengths, †"A" are 925mm, "B" are 1094mm and "C" are 1124mm. They all have 78 degree cuts on the ends except the "A" struts, which have 80 degree ends.

I have cut all the "C"s (x 50) and all the "B"s (x40). I have used all the best timber, so the shorter "A" struts are going to contain a few knots. I have also drilled all the "C" strut ends, and screwed in the dowels. So I now have 50 struts with a short length of M8 machine thread sticking out the end for attaching to the hubs.

February 28th.

Both the building and the blogging have been interrupted by weather, work and travel this month. However, the preparation has continued in fits and starts. The foundation is complete to ground level, with a levelled circle of gravel. I have made a wooden riser wall with 6 x 2 treated timber and am trying to figure out what the next step might be.

IMG_2611

The photo shows the riser wall in fourteen sections. The fifteenth section is void for the door. Before the dome is erected on the riser wall, I will need to join the sections together, find a way of anchoring the hubs to the ground, and adjust the top edge of the riser wall sections to accommodate a dome that does not have a straight horizontal lower edge. I have an idea of how these edges will need to cut, but to be safe, I plan to erect the dome and check the adjustments needed before I take the saw to them.

I have now completed the struts, all with the machine head end of the dowels protruding from the ends awaiting assembly.

IMG_2601 IMG_2602

I have put a cable clip around each strut end to try and ensure that the timber ends do not split. I have also done a little pre-assembly of the struts, making up the five pentagons that will comprise parts of the first and second layers of the dome. A sixth pentagon will crown the structure, but it may be simpler not to pre-assemble this

Work this month has also included the purchase of 77 square metres of horticultural polythene. I needed 30 triangular panels for the six pentagons, and 45 triangular panels of different size for the hexagon and part-hexagon areas. I made a pattern for both triangles with a piece of vinyl flooring, and I used the patterns to cut out triangles of polythene four or five at a time. The polythene has an inner and outer surface, so I have marked each panel with a letter "e", which reads correctly when viewed from the outside only.

So, all the parts are made. I now have a complete dome "kit", a finished site and foundation, a riser wall in progress awaiting inspiration about how to complete it, and a need to start assembly before I can sort out the riser wall and ground anchor details. The preparation stage is complete; it's time to start construction.

After six weeks of sourcing, digging, levelling, measuring, cutting, drilling and screwing, it's time to assemble the parts and find out if it comes out dome-shaped. If it does, I would once again like to thank the online dome-wonks at (not permitted to say - †search for "geo-dome" for online advice) for all their guidance and their dome calculator tools.

I started work at around 9.00 this morning, moving materials into place and completing preparations

IMG_2612

I prefabricated 5 x 12 strut shapes, each a pentagon with a triangular extension. This photo was taken at around 10.00 this morning.

IMG_2613

I propped them roughly in place with 5 long pieces of wood. I added 5 x 3 struts in a "Z" pattern to complete the lower course of triangles. Then I completed the second course by adding 5 x 4 struts on 6 x 60 degree hubs.

IMG_2614

The time was now 12.30, and the dome is assembled to two courses. It is also self-supporting.

I had thought that I might need assistance with the assembly. However, with a little planning, it was quite straight-forward to support the sections with props whilst linking them together with more struts.

I added 5 x 3 strut "Y"s to the top of each pentagon, and reached a stage where I was just 10 struts from completion. Unfortunately, I looked in my strut pile, and found that, although I had 10 struts remaining, they were not the lengths I was expecting. Somewhere in the built structure, I had used 2 x "B" struts where I should have used "C" struts. An easy mistake: each strut is over a metre long, and there is only 30mm difference in length between these two types. However, this is quite sufficient to cause distortion, or even weakness in the structure, so I had to take around an hour out of assembly to measure every X?!*X!&* strut, and substitute "C"s fo "B"s. As a result, it was nearly 4.00 when I tightened the final nuts.

IMG_2615

This is what it looks like fully assembled. It is by no means finished, but visually it looks pretty much what a finished dome will look like.

IMG_2620 IMG_2618

A detail of the 75 mm plastic waterpipe hubs. The first picture shows the five-way hub somewhat distorted under pressure. The second picture shows the there is plenty of room in these hubs to use a ratchet head socket spanner, provided no space is wasted with protruding dowels.

Jobs remaining:
- † † Cut the riser wall to accommodate unlevel base of dome, with semi circular cutouts for hubs.
- † † Fix riser wall sections (14 of them) to gravel boards underneath
- † † Join riser wall sections at edges for stability
- † † Make / Find / Improvise 3 or more ground anchors to hold everything down in case of high winds.
- † † To achieve this, I think it will be easiest to jack the dome up and assemble these parts underneath.
- † † Lower dome onto riser wall and fix
- † † Create rectangular door opening in east-facing pentagon.
- † † Create opening window frame in 2 or more upper triangles
- † † Cover the whole structure with pre-cut polythene shapes

3rd March

Riser Wall

I've spent a day making the riser wall for the dome, shown above. There are 14 sections of 6 x 2 timber, and I already had them cut to length with 12 degree angle ends to make a quindecagon wall. (One section of wall is "missing" - for the door.) Yesterday, I had to notch the corners to accommodate the hubs, and also trim the wall height to allow for the unlevel base of the dome. The pentagon bottoms are horizontal, and the walls need to rise either side to the half-hexagon hubs: about 35mm. I had already got this profile in mind, but I wanted to check before cutting the timber.

This was the hard way to do it. It meant I had to lift the dome onto the wall to check the profile, and this took a couple of hours of careful jacking and propping. There was also an issue with the hubs dropping; I had to hold them in shape in the horizontal plane to see what their vertical profile would be. A bit of a slog.

Here's what it looks like today

IMG_2629

and a close up of the hub recesses

IMG_2627

It's all just standing loose at present; tomorrow I need to screw everything down, screw those riser wall sections together. Constructing the door is the next job.

I don't think I'm going to make ground anchors. It's a low-profile dome in a sheltered position, and it will weigh around 400Kg with the riser wall attached. Shouldn't be going anywhere.

6th March

I've spent a morning doing "invisible" but essential work, screwing the riser wall sections together and screwing the lower dome struts to the riser wall. Everything feels much more stable and rigid now, and it's no longer possible to lift the dome or adjust it's position.

In the afternoon I created a doorframe.

IMG_2631

I took out the five radial struts from one of the pentagons.
IMG_2632

Added "vertical" door frames. They appear vertical when viewed from outside, head on, but they are lying in the plane of the pentagon, so are tilted upwards about 15 degrees.

IMG_2633

Note the fancy short bracing struts, making effective use of the vacant strut bolt hole on the side hubs of the pentagon.

A bit of dome theory. This is a 3V 4/9ths dome. Geodesic domes are based on the icosahedron, a platonic solid with 20 triangular faces and 12 5-way vertices.

80px-Icosahedron.svg

In geodesic domes, the straight edges of these triangles are divided into 2, 3, 4 or 5 etc equal lengths to make a more spherical shape; the more divisions are made, the more the dome will approximate to a Hemisphere, however the complexity of construction will also increase.

In my dome, each straight edge is divided into 3, hence the term "3V".

In an icosahedron, opposite vertices are separated by 3 triangles. If geodesic spheres were created, the separation of opposite vertices would be:

2V 6 triangles
3V 9 triangles
4V† 12 triangles
5V 15 triangles
6V 18 triangles

Hemi-spheres - i.e. domes - are easy to create in 2V, 4V and 6V domes; you just build half a sphere and you obtain a dome shape with vertical sides (at the ground) and a nice flat bottom. With a 3V dome, a semi-sphere would be 4.5 triangles. This could be done, but it is more usual to construct a dome that is less than the hemisphere, 4 triangles from apex to base (4/9th) or one that is more than the hemisphere with 5 triangles from apex to base (5/9th). Either way, you end up with a shape that is made up of just two sizes of triangles, but which has a slightly non-planar base.

I have gone for a 6 metre diameter 3V, 4/9th dome. For smaller diameter domes, the headroom in a 4/9 type might be a problem, and so the 5/9 (more than a hemisphere) is a good choice. For my dome, 5/9th construction would have created a different sort of headroom problem; a 5/9th dome of 6 metres diameter would have been well over 3 metres in height, and would have required planning permission. It is also less work - just 75 triangles for a 4/9th instead of 105 for a 5/9th.

So far, so logical. However, I have made myself a bit of a problem. Geodesic domes are made up of hexagonal and pentagonal arrangements of triangles. †In a 5/9th dome, †there are five hexagons among the bottom two courses of triangles, and hexagons can be easily adapted to take a rectangular door-frame, having a good, wide horizontal bar as an upper edge of the hexagon. But in my 4/9th dome, there are five pentagons in the bottom 2 courses, and the only place to put a door is in one of the pentagons. Here it is again:

IMG_2633

This opening is just high enough to walk under with a small duck of the head. If I squared off the door frame with a horizontal bar, then I would have to crawl under it every time. What I'm trying to explain is this: it's not going to be a square door frame, it's going to be the shape shown in the photo

Monday 7th March

I have bought 77 square metres of:

"XL Horticulture's Sterilite Polythene, a High Diffused, Thermic, Disease Reducing, Anti Fog, 600g/150mu Polythene Film. Designed especially for Polytunnels.

To cut out the shapes I needed, I assembled one of the triangles from the dome hexagons and one from the dome pentagons and transferred the shape to two patterns made from vinyl flooring offcuts. Then I used the vinyl patterns to cut the polythene with a craft knife, 4 or 5 layers at a time. The triangles tesselate nicely for economical cutting.

I also cut some 3-triangle, half-hexagon shapes. The theory is that this is easier to fix three at once and saves time.

IMG_2634

I started at the bottom, so that upper layers overlap those below, tiled roof style. My photo shows how far I got on the first day with a hand staple gun, before my wrist started to ache.

I was out to Machine Mart next morning for an electric stapler and a big box of staples.

It was a cloudless morning, bright sunshine all day, and I had my triangles of polythene cut and my new electric stapler.

IMG_2636

First course completed, second course under way:-

IMG_2635

Detail of pentagon centre hub with polythene cover complete:-
IMG_2638

Two courses complete, and a very atmospheric pattern of internal shadows. (Once the upper courses are covered, there will be no more shadow patterns like this, as the sterilite diffuses incoming light.)

IMG_2639

And, just as the shadows were lengthening, a near-complete dome. I've got 4 out-of-sight triangles yet to do, having managed to count the triangles incorrectly. I've also got the door, which I haven't made yet, and two opening windows, also unmade. In the photo above, you can also see four large paving stones in the doorway providing a level surface against which the door can lean.

Saturday 12th March

So, I've cut a bit more polythene and finished all the fixed triangles, which just leaves the windows and door.

For the two windows, I just used the vinyl pattern from polythene cutting as a template for making a couple of wooden triangle frames. I've used tiling battens to keep the weight and profile down. Covered with polythene and fixed with two brass hinges.

IMG_2649

It's the upper triangle of this hexagon, hinged at the top. I don't have any window stays yet; I'm thinking about getting some automatic window openers, think it might prevent the plants from over-heating when we are out.

As for the door......

IMG_2651

It's a double door, made of 38 x 38mm like the dome struts. I could have squared the top, but would have lost another 9 inches headroom, and I'm already needing to stoop to enter as it is. So ..... pointed top doors. The door panels needed a little angled bracing, so I have echoed the pattern of the pentagon that has been removed for the door opening.

IMG_2650

The doors open upwards, as you can see above. Whilst this is slightly inelegant, the only way to get hinged doors to vertical in this structure would be to have a canopy / tunnel projecting out to vertical, and this would be sticking out all the time, not just when the doors are open.

I like the no-fuss door stays I've come up with: 2 posts stop the doors from opening further than 90 degrees, and a swinging arm is used to jam both doors in this position. The swinging arm is fixed to the top corner of the left door, and clips into place on the inside of the door when not in use.

IMG_2647

At this point, when asked by friends how the greenhouse is coming along, I say "It's finished. Ready for some plants." So this is a suitable time to stop recording the building process. There are some outstanding jobs to do: the window stays, or automatic openers; some staging; I need to block the holes in the ground-level hubs to stop mice or rabbits getting in; perhaps stick down some of the polythene corners that flap in the wind. It's had quite a good wind test this week, without any damage.

I intend to leave this blog in place for my own record, and as a reference point for anyone who expresses a lot of interest in this structure or in building something similar. I may add some more photos once it's full of plants, staging, colour and interest. But for now, that's it!

IMG_2648

A note on the (approximate) costs of this project:

75mm hdpe pressure water pipe.......................................£25
38mm x 38mm timber , 156 metres................................£168
20mm shingle, 0.5 ton.....................................................£12
Machine thread to wood screw dowels, nuts, washers etc..£46
Timber for riser wall.........................................................£54
Sterilite Polythene 11m x 7.3m........................................£94
Staples, screws, hinges..................................................£25

Total £424

July Update

I have added a little hardware to the dome: some rodent fencing over the lower hubs and some automatic vent openers for the windows.
Rodent-Barrier Automatic-Vent-Opener

The vent openers are a must-have, even in our very temperate climate. As soon as the sun comes out and the temperature rises, the upper windows rise like flower petals and allow the heat to escape. I've no idea if the rodent barriers are necessary or not.

And here's what the greenhouse looks like in mid-July:

Crop1 Crop4

Crop3 Crop2 Mid-July-Harvest

So far, so good with the tomatoes. We also had a lot of early salad leaves and radishes before the outdoor crops got going. I might need to invest in some better plant supports next year. I wasn't expecting quite such a heavy crop.